
Topic Includes : Inheritance

The objectives of this chapter are:

To explore the concept and implications of inheritance
Polymorphism

To define the syntax of inheritance in Java
To understand the class hierarchy of Java
To examine the effect of inheritance on constructors

Topic Includes : Inheritance

The objectives of this chapter are:

To explore the concept and implications of inheritance

To define the syntax of inheritance in Java
To understand the class hierarchy of Java
To examine the effect of inheritance on constructors

Introduction

Inheritance is a fundamental Object Oriented concept

A class can be defined as a "subclass" of another class.
The subclass inherits all data attributes of its superclass
The subclass inherits all methods of its superclass
The subclass inherits all associations of its superclass

The subclass can:
Add new functionality
Use inherited functionality
Override inherited functionality

Introduction

Inheritance is a fundamental Object Oriented concept

A class can be defined as a "subclass" of another class.
The subclass inherits all data attributes of its superclass
The subclass inherits all methods of its superclass
The subclass inherits all associations of its superclass

Person
- name: String
- dob: Date

Employee
- employeeID: int
- salary: int
- startDate: Date

superclass:

subclass:

What really happens?

When an object is created using new, the system must
allocate enough memory to hold all its instance variables.

This includes any inherited instance variables

In this example, we can say that an Employee "is a kind of"
Person.

An Employee object inherits all of the attributes, methods and
associations of Person

Person
- name: String
- dob: Date

Employee
- employeeID: int
- salary: int
- startDate: Date

Person
name = "John
Smith"
dob = Jan 13, 1954

is a kind of

What really happens?

When an object is created using new, the system must
allocate enough memory to hold all its instance variables.

This includes any inherited instance variables

In this example, we can say that an Employee "is a kind of"

An Employee object inherits all of the attributes, methods and

name = "John

dob = Jan 13, 1954
Employee
name = "Sally Halls"
dob = Mar 15, 1968
employeeID = 37518
salary = 65000
startDate = Dec 15,
2000

Inheritance in Java

Inheritance is declared using the "extends" keyword
If inheritance is not defined, the class extends a class called Object

public class Person
{

private String name;
private Date dob;
[...]

public class Employee extends Person
{

private int employeID;
private int salary;
private Date startDate;
[...]

Employee anEmployee = new Employee();

Inheritance in Java

Inheritance is declared using the "extends" keyword
If inheritance is not defined, the class extends a class called Object

Person
- name: String
- dob: Date

Employee
- employeeID: int
- salary: int
- startDate: Date

Employee anEmployee = new Employee();

Application: Inheritance Hierarchy

Each Java class has one (and only one) superclass.
C++ allows for multiple inheritance

Inheritance creates a class hierarchy
Classes higher in the hierarchy are more general and more abstract
Classes lower in the hierarchy are more specific and concrete

There is no limit to the
number of subclasses a class
can have

There is no limit to the depth
of the class tree.

Application: Inheritance Hierarchy

Each Java class has one (and only one) superclass.

Inheritance creates a class hierarchy
Classes higher in the hierarchy are more general and more abstract
Classes lower in the hierarchy are more specific and concrete

Class

Class Class Class

Class

Class ClassClass

The class called Object

At the very top of the inheritance tree is a class called Object

All Java classes inherit from Object.
All objects have a common ancestor
This is different from C++

The Object class is defined in the java.lang package
Examine it in the Java API Specification

Object

The class called Object

At the very top of the inheritance tree is a class called Object

All Java classes inherit from Object.
All objects have a common ancestor

The Object class is defined in the java.lang package
Examine it in the Java API Specification

Object

Constructors and Initialization

Classes use constructors to initialize instance variables
When a subclass object is created, its constructor is called.
It is the responsibility of the subclass constructor to invoke the
appropriate superclass constructors so that the instance variables
defined in the superclass are properly initialized

Superclass constructors can be called using the "super"
keyword in a manner similar to "this"

It must be the first line of code in the constructor

If a call to super is not made, the system will automatically
attempt to invoke the no-argument constructor of the
superclass.

Constructors and Initialization

Classes use constructors to initialize instance variables
When a subclass object is created, its constructor is called.
It is the responsibility of the subclass constructor to invoke the
appropriate superclass constructors so that the instance variables
defined in the superclass are properly initialized

Superclass constructors can be called using the "super"
keyword in a manner similar to "this"

It must be the first line of code in the constructor

If a call to super is not made, the system will automatically
argument constructor of the

Constructors

public class BankAccount
{

private String ownersName;
private int accountNumber;
private float balance;

public BankAccount(int anAccountNumber, String aName)
{

accountNumber = anAccountNumber;
ownersName = aName;

}
[...]

}

public class OverdraftAccount extends BankAccount
{

private float overdraftLimit;

public OverdraftAccount(int anAccountNumber, String aName, float aLimit)
{

super(anAccountNumber, aName);
overdraftLimit = aLimit;

}
}

Constructors - Example

public BankAccount(int anAccountNumber, String aName)

public OverdraftAccount(int anAccountNumber, String aName, float aLimit)

Method Overriding

Subclasses inherit all methods from their superclass
Sometimes, the implementation of the method in the superclass does
not provide the functionality required by the subclass.
In these cases, the method must be overridden.

To override a method, provide an implementation in the
subclass.

The method in the subclass MUST have the exact same signature as
the method it is overriding.

Method Overriding

Subclasses inherit all methods from their superclass
Sometimes, the implementation of the method in the superclass does
not provide the functionality required by the subclass.
In these cases, the method must be overridden.

To override a method, provide an implementation in the

The method in the subclass MUST have the exact same signature as

Method overriding

public class BankAccount
{

private String ownersName;
private int accountNumber;
protected float balance;

public void deposit(float anAmount)
{

if (anAmount>0.0)
balance = balance + anAmount;

}

public void withdraw(float anAmount)
{

if ((anAmount>0.0) && (balance>anAmount))
balance = balance - anAmount;

}

public float getBalance()
{

return balance;
}

}

Method overriding - Example

balance = balance + anAmount;

if ((anAmount>0.0) && (balance>anAmount))
anAmount;

Method overriding

public class OverdraftAccount extends BankAccount
{

private float limit;

public void withdraw(float anAmount)
{

if ((anAmount>0.0) && (getBalance()+limit>anAmount))
balance = balance - anAmount;

}

}

Method overriding - Example

public class OverdraftAccount extends BankAccount

if ((anAmount>0.0) && (getBalance()+limit>anAmount))
anAmount;

Object References and Inheritance

Inheritance defines "a kind of" relationship.
In the previous example, OverdraftAccount "is a kind of" BankAccount

Because of this relationship, programmers can "substitute"
object references.

A superclass reference can refer to an instance of the superclass OR an
instance of ANY class which inherits from the superclass.

BankAccount anAccount = new BankAccount(123456, "Craig");

BankAccount account1 = new OverdraftAccount(3323, "John", 1000.0);

anAccount

account1

BankAccount
name = "Craig"
accountNumber = 123456

Object References and Inheritance

Inheritance defines "a kind of" relationship.
In the previous example, OverdraftAccount "is a kind of" BankAccount

Because of this relationship, programmers can "substitute"

A superclass reference can refer to an instance of the superclass OR an
instance of ANY class which inherits from the superclass.

BankAccount anAccount = new BankAccount(123456, "Craig");

BankAccount account1 = new OverdraftAccount(3323, "John", 1000.0);

account1

accountNumber = 123456 OverdraftAccount
name = "John"
accountNumber =
3323
limit = 1000.0

